We use cookies and other similar technologies (Cookies) to enhance your experience and to provide you with relevant content and ads. By using our website, you are agreeing to the use of Cookies. You can change your settings at any time. Cookie Policy.

Split Personalities Put Data Scientists in Play

Originally published September 11, 2012

Data scientists are a new type of analyst: part data engineer, part statistician, and part experienced business analyst. And they're in high demand: Companies are combing through resumes and job websites, interviewing recent university grads, and poaching from their competitors in an effort to bring these new talents into their organizations.

Of course, we’ve had statistical analysts – or “quants” – in our organizations for years. These are often doctorate-bearing, white-jacketed folks who spend their days in the rarified towers of the back office. Unfortunately, while they are great at analyzing data, they are not always the best at explaining their findings to corporate executives and lower-level business workers in understandable terms. In many cases, it is nearly impossible to get clear answers from them to questions such as the following:

  • I see the trends, but why are they important and what should I do to change them?

  • What impact will changing customers’ buying behaviors have on our revenues?

  • How do we change the causes of negative effects into more positive results?
These experts also find it difficult to access the right data in the right format and at the right time to perform their analytical explorations and investigations. Often they have to rely on IT to provide the data extracts, the supporting analytical technology and the high performance infrastructure their jobs depend on. Many still find it frustrating to have an intermediary between them and “their” data.

Enter the Data Scientists

Data scientists may be the people who can finally bridge the gap between doing advanced data analysis and using the findings of that analysis to produce business results that align with an organization's strategic goals. But what exactly is a data scientist?

To answer this, we first need to understand the different “information workers” found in our enterprises. These employees can be segmented into three broad categories:
  • Business intelligence (BI)/data warehouse (DW) builders. Traditionally these are the people responsible for designing and implementing BI systems. However, because of budget, resource, or priority issues, they are often perceived as the bottleneck in deploying BI and analytics tools. They come from central or line-of-business IT staffs or are technologically savvy business users.

  • Information consumers. These information workers use and apply BI results to support day-to-day business operations. They need BI and analytics findings to increase knowledge and make sound business decisions. But they rarely have the experience or inclination to create the required information themselves.

  • Information producers. These are the folks who generate BI results for information consumers. Information producers identify potential new business opportunities, analyze or investigate data, and create actionable BI and analytic models. We often know them as power users or business analysts, but increasingly they are also the much-sought-after data scientists.
One of the pundits promoting the use of data scientists in companies is D.J. Patil, former chief scientist and head of data products at LinkedIn Corp. and now a "data scientist in residence" at venture capital firm Greylock Partners. In his book, Building Data Science Teams, Patil says good data scientists have a combination of technical expertise (deep proficiency in some scientific discipline), curiosity (a desire to discover and distill a problem into a clear set of hypotheses that can be tested), storytelling ability (a knack for using data to tell its story and communicating that story to others), and cleverness (the ability to think outside the box and approach problems in creative ways).

We have consolidated  data scientist skills into three categories for further clarification:
Business expertise – Data scientists must be  subject-matter experts with strong investigative capabilities.

Modeling and analysis skills – They also must be trained in areas such as statistics, machine learning and data visualization and be able to create the models and programs needed to perform data analysis activities.

Data engineering skills – In addition, data scientists must be adept at data engineering, including the ability to mash up or blend large amounts of data.
You may ask: Why this sudden interest in data scientists? Perhaps it is because we can now do things with our data that were not technologically possible before. Certainly the introduction of "big data" has spurred innovation in many areas including data storage and analytics applications and infrastructures. We now have analytical platforms that can be used to store and analyze massive sets of data, not just small samples or subsets of information. We also are seeing advances in applications that allow very sophisticated analyses to be performed with ease.

We believe the meteoric rise of the data scientist has resulted from these improvements, and companies worldwide can benefit from the incorporation of these highly skilled, and potentially highly valuable, employees into their ranks.

  • Claudia ImhoffClaudia Imhoff
    A thought leader, visionary, and practitioner, Claudia Imhoff, Ph.D., is an internationally recognized expert on analytics, business intelligence, and the architectures to support these initiatives. Dr. Imhoff has co-authored five books on these subjects and writes articles (totaling more than 150) for technical and business magazines.

    She is also the Founder of the Boulder BI Brain Trust, a consortium of independent analysts and consultants (www.BBBT.us). You can follow them on Twitter at #BBBT

    Editor's Note:
    More articles and resources are available in Claudia's BeyeNETWORK Expert Channel. Be sure to visit today!


  • Colin WhiteColin White

    Colin White is the founder of BI Research and president of DataBase Associates Inc. As an analyst, educator and writer, he is well known for his in-depth knowledge of data management, information integration, and business intelligence technologies and how they can be used for building the smart and agile business. With many years of IT experience, he has consulted for dozens of companies throughout the world and is a frequent speaker at leading IT events. Colin has written numerous articles and papers on deploying new and evolving information technologies for business benefit and is a regular contributor to several leading print- and web-based industry journals. For ten years he was the conference chair of the Shared Insights Portals, Content Management, and Collaboration conference. He was also the conference director of the DB/EXPO trade show and conference.

    Editor's Note: More articles and resources are available in Colin's BeyeNETWORK Expert Channel. Be sure to visit today!

Recent articles by Claudia Imhoff, Colin White



Want to post a comment? Login or become a member today!

Be the first to comment!