We use cookies and other similar technologies (Cookies) to enhance your experience and to provide you with relevant content and ads. By using our website, you are agreeing to the use of Cookies. You can change your settings at any time. Cookie Policy.

Blog: Lyndsay Wise Subscribe to this blog's RSS feed!

Lyndsay Wise

Hi and welcome to my blog! I look forward to bringing you weekly posts about what is happening in the world of BI, CDI and marketing performance management.

About the author >

Lyndsay is the President and Founder of WiseAnalytics, an independent analyst firm specializing in business intelligence, master data management and unstructured data. For more than seven years, she has assisted clients in business systems analysis, software selection and implementation of enterprise applications. Lyndsay conducts regular research studies, consults, writes articles and speaks about improving the value of business intelligence within organizations. She can be reached at lwise@wiseanalytics.com.

Editor's Note: More articles and resources are available in Lyndsay's BeyeNETWORK Expert Channel. Be sure to visit today!

The way in which organizations apply analytics is in constant flux. Technology and integration advancements make access to analytics and BI applications much more flexible, leading to greater adoption of embedded analytics. Companies want to embed their analytics within their day-to-day applications to make analytics access more seamless within their daily operations. One of the reasons behind this is the ability to grant access to more people without being limited by BI expertise. Additionally, companies want to empower their employees to act upon issues as they occur, instead of having to rely on accessing multiple applications and searching for answers.

For organizations transitioning towards embedded analytics, there are a number of considerations required, some of which were addressed in a recent Webinar titled 7 Considerations of Embedded Analytics in conjunction with Pentaho.  These considerations (which include looking more broadly at data integration, understanding potential big data challenges, and ensuring closed-loop processes to make information actionable) provide general guidelines as well as some of the technical requirements for embedded BI adoption. Many businesses adopt this type of analytical approach as a way to deliver BI access to a broader array of business users without requiring high levels of training to go with it.  More accessibility and easy access to data translate into more effective decision making overall.

On the other side of the argument, organizations need to realize that when they choose an embedded approach, they may be limiting data access to specific data sources and not creating a broader approach to decision-making across the organization. Embedded BI is most intuitive when limiting analytics views and interactions to the questions being addressed within the transactional/operational applications being used. This means that two types of BI may be required – the first being a more holistic approach to information challenges within the organization, and the second requiring more targeted analytics addressed through embedded analytics.

Overall, there are definite benefits to leveraging an embedded BI approach to analytics. At the same time, organizations need to realize that considerations for embedded BI adoption require looking at the analytical needs of the organization more broadly. Users adopting embedded analytics might also need access to additional data sources and other ways of interacting with BI meaning that although embedded analytics can provide added value, it may not be the only analytics use required for more effective decision making.


Posted January 21, 2014 3:22 PM
Permalink | No Comments |

Search this blog
Categories ›
Archives ›
Recent Entries ›